skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhao, Guangyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Changing atmospheric circulations shift global weather patterns and their extremes, profoundly affecting human societies and ecosystems. Studies using atmospheric reanalysis and climate model data indicate diverse circulation changes in recent decades but show discrepancies in magnitude and even direction, underscoring the urgent need for validation with independent, climate-quality measurements. Here we show statistically significant changes in tropospheric circulation over the past two decades using satellite-observed, height-resolved cloud motion vectors from the Multi-angle Imaging SpectroRadiometer (MISR). Upper tropospheric cloud motion speeds in the mid-latitudes have increased by up to about 4 m s−1 decade−1. This acceleration is primarily because of the strengthening of meridional flow, potentially indicating more poleward storm tracks or intensified extratropical cyclones. The Northern and Southern Hemisphere tropics shifted poleward at rates of 0.42 ± 0.22 and 0.02 ± 0.14° latitude decade−1 (95% confidence interval), respectively, whereas the corresponding polar fronts shifted at rates of 0.37 ± 0.31 and 0.31 ± 0.21° latitude decade−1. We also show that the widely used ERA5 reanalysis winds subsampled to the MISR are in good agreement with the climatological values and trends of the MISR but indicate probable ERA5 biases in the upper troposphere. These MISR-based observations provide critical benchmarks for refining reanalysis and climate models to advance our understanding of climate change impacts on cloud and atmospheric circulations. 
    more » « less
    Free, publicly-accessible full text available July 24, 2026
  2. null (Ed.)